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A method is described for the solution of the nonlinear equations
for supersonic conical flow. The procedure is mostly a numerical one”
based on the method of characteristics and the relaxation process. A_
procedure for calculating the position of the shock is inherent inthe
analysis. The method is applicable to any conical flow.

As an illustration, the flow about a triangular wing with super-
sonic edges is presented.

INTRODUCTION

A lmowledge of the characteristics of bodies in supersonic flight
is dependent on both theoretical and experimental information. Most
theoretical aercxlynamicdata are obtained by the use of linearized
theory which permits only very slender balies and small angles of
attack. In determining the value of such information and the practical
range over which the parameters such as bcdy diameter, wing thiclmess,
and angle of attack may be allowed to vary, one must rely on comparison
of these results tith either experiment or a nonlinear theory. Because
of the limited experimental facilities available and the expense
involved in their operation and in mdel construction, the existence of
a practical nonlinear theory becomes important. Further, if more accu-
rate results are desired than may be obtained from a linear theory, a
nonlinear one is required.

In the case of conical flows, the solutims which have been obtained
up to the present time have been found mostly by the use of linearized
theory. Busemann (reference 1) introduced this procedure. References 2
and 3, to mention only two investigations,present extensive studies of
thin conical wings. Browne, Frie&oan, ~ Hcdes (reference 4) have
solved a special wing-body problem. In refer=”ce”s, a fairly genem31
method of solution is given for fuselage-type conical bcdies. Linear-
ized solutions, satisfying the exact boundary coriditions,have been dis-
cussed by Laporte and Eartels (reference 6). Moore (reference 7) and
Broderick (referaice:8)have obtained second-order linearized solutions

.
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2 NACA ~ 2651

for several conical flows. More general analyses applicable to conical
problems include, for example, Eward~s work given in reference 9 (this
is applicable in the lifting case only when there is a supersonic
leading edge) and Spreiter?s solutions (reference 10) for very slender
bdies and low-aspect-ratiowings. .

The application of nonlinear theory to conical flows has been lim-
ited mostly to Taylor and Maccoll~s solutions for the right circular
cone at zero angle of attack (references 11 and 12). Solutions for the
yawed circular cone are given in references 13 to 15. Busemann (refer-
ence 16) and Ferrari (reference 17) have presented a general discussion
of the nonlinear problem. Ferri (reference 18) has given some general
analysis of the problem with particular reference to the yawed cone.
However, until the present, no attempt has been made to present a
detailed method for the solution of the general conical-flow problem.
The solution presented herein is of necessity mostly a numerical one
using the methois of characteristics and relaxation. In the latter
case, reference to work by SouthwelJ_and Emmns (Seej e.g.> refer-
erences 19 and 20) has been found valuable. A discussion, by Lighthill,
of the shape of the shock about a conical obstacle (refem?nce 21) also
proved useful.

“
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SYMBOLS

A

c

Ct

Cp

J.

K

rotation, deftied by equation (10)

velocity

velocity

pressure
Stresal

of sound divided by ma+ velocity

of sound

coefficient, difference between local and free-
static pressures divided by free-stream dynamic

pressure

mechanical equivalent of

function of velocity and
equation (40)

heat

its derivatives, defined by

.
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M

‘N1

%2

Q

R, 13,(p

R

s = JS~/7R

St

%1

‘%2

ST

T

u, v, w

ii

vx~ Vy) Vz

Tt

7

w=

a

P

7

Mach number of free stream

component of free-streamMach
leading edge

component of free-streamMach
normal to shock

3

number taken normal to wing

“numbertaken behind and

fun~tion of shock position, slope, and free-stream Mach
number, definet,by equation (33b) \

spherical coordinates

gas constant

entropy

speed normal to wing leading edge

speed behind a& normal to shock

speed t.migentto wing leading edge

velocity component lying on surface of sphere through

conical vertex (dz+

ratio of velocity components in’r-j 19-,and q-directions,
respectively, to nwdmum velocity

ratio of

ratio of

velocity

free-stream velocity to maximum velocity

Cartesian velocity components to speed of sound

vector

~t divided by maximum velocity

maximum velocity

ratio of velocities in + and ~directions (-v/w)

streamlines‘.,

a&a~tic exponent

— — ——.———-
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arc-tangent of slope of shocl,on su~face r = Constant

slope of bcdy-tangent plane, defined in figure 4

angle dewed in figure 4 and equations (24)

equation of lxxly

shock angle, measured in plane lying normal to leading
edge of surface to which shock is attached

angle defined in figure 4 and equations

angle deftied in figure 4 and equations

differentiation with respect to O and

ANAIYSIS

The equations of motion of a perfect isoenergetic
written acco-g to reference 22 as

(vxv’)x~t=

and

where

—

()(C?)2V*

(24)

(24)

q, respectively

fluid may be

(1)

(2)

(3)

and where ~’ is the velocity vector; ST, the entropy; J, the mechan-
ical equivalent of heat; 7, the adiabatic exponent; R, the gas con-
stant; w_, the msximum speed obtainable on expansion into a vacuum

(also co~tant); and C’, the velocity of sound. A change of variables -
may now be made to nondimensionalize the quantities. Let

— .——
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s = Jst/7R

,
T= 7t/wm

.

c.= c’/wmax 1

1

Using these new variables, equations (1) and “(2)
ical coordinates r, e, and q (fig. 1). This

5

(4)

were expanded in spher-
was done for conical

flow (so that neither the velocity’nor entropy,are functions of r).
Noting that u, v, and w are the components of ~ in the r-, 0-,
and cp-directions,~espectively, one obtains

‘(v - %) - ‘(we -~+ w co’ ‘)=‘%O

(Vw e
w cot )e

and, using equation (>),

‘2

[ ,1
tistie+(?stie)e+w =

sti e 9
. .

U(V’2+w?)+ :(.2+ $)e -1- w [$+ W2)V
28he

Equations (5) yield

This says simply that
of a stream surface with a

Vse+xL=
sin e

the entropy is
sphere through

(%)

(’m)

(5’)

(6)

o (7)

constant on the intersection
the vertex of the conical

— ——-—— .——— -—— ——_— ——..—._ ._ _ ____ ._
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flow.
n

Henceforth, such an intersection will be termed, for convenience,
a streamline. Denote by 13= j3(f3)the equation of such a streamline.
Its equaticm, in terms of the velocity ccmqmnents, is

. ,.

(8)

Thus the entropy is a function of P only and will hence be determined
solely by conditions at the juncture between the disturbed and
undisturbed flow.

Solving equations (5a) and (8) for v and w as functions of P
A u, ane obtains

V=u e -A
I

and

9*w=—-
SiI.Ie J

where

(9) ‘

.

(lo)

ue+~sine
A=

l+ap ‘J

The A is essentially the rotation.
?
“-en,using these relations, the

two rem3ining ones (equations (’jb).~a 6)) become

( )[,2-* --&-
1

(di Sti ‘)6J. -c% ~e
UA+ P (U)

SiII e SiII e sti e

.
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and

7

(Uecotel+ %2

)
-%=

C2 sin2e C2 sin2e

[ 1---& (Asinf3)6+ (aA)q +

A—
C2

A ( 2
)

(

%-Ul+a
)

+~o+ ~+aueae+fi(mqe-uq
—

Equation (12) can-bewritten in this alternative form:

u

—

2- (Ue - A)2

~2 -

(273-“%1-
sin e

L

.

I)cOt e +

(*~*)7+(ue-A)ei-(
(Ei?i#j,(u, - A)cote~+*]-

(& - ‘)(”e-‘) ~ - a ‘in e ‘); (Ue - ‘)q
=2

f
+

1
= o

sin e
(13)

sin e

(12)

+

——. .____ ——.— . . . .—-.
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It is noted that, if the flow is irrotational, then Sp s O, 0

A s O, and equation (n) is identically satisfied, and the right-hand
side of equation (12) is also O. In such a case, one need merely find u
satisfying the left-hand side of equation (12) set equal to O“ and, of
course, obeying the boundary conditions. It is worth noting that, u
may, in this case, be thought of as a velocity potential (actually, the
velocity potential would.be ru(eyq)).

To solve a conical-flowproblem equations (n) and (12) or (13)
need to be solved, subject to the apprcrpriafebmndary conditions. There
are two main difficulties which will arise. One comes from the boundary
conditions from a shock surface, the location of which is initially
unlalown. The other difficulty is caused by the fact that, in general,
the differential equations form a set which in every case has elliptic
regions and in
for the system

many cases wilJ_also have hyperbolic ones. The condition
to be elliptic is that

C2>V2+W2

One may note that in the case of small disturbances, such as linearized
flow, this condition corresponds to whether the point in question is
inside or outside the free-streamMach cone exknding downstream from
the vertex. In configurations such as a baly of revolution at angle of
attack, the domain inside the shock till be dntirely elliptic, while in
the case, for example, of a wing witlisupersonic leading edges, as will
be discussed in more detail later, there will be both elliptic and
hyperbolic regions. Any part of a hyperbolic region which is completely
independent of the elliptic region may be conveniently calculated-by the
methai of characteristics,while any other region, either elliptic or
hyperbolic, will be found h this report by a relaxation process.

To set up the method of c~racteristics for the systems, it is
noted that there are two second-order quasi-linear partial differential
equations, equations (n) and (13), for 13,and u, where their second

.()%’
‘derivatives appear only as-the first derivatives of a, sin e

6“8
2

Note that these two quantities are

1
‘-b—- ‘e

T““R= }
. (15)

.
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.

Then equations (n) and (13) may be rewritten as

k=+, +~) +.(-%+J&J=

- (1+(#)( $ )I-IA + C%pf3e + — cOt e
w ~2

and

q 1+ CFV2 a=’ )(Te - ‘T
a ~- l+a2 )asine -

w ( ‘% )( VP VP)—=-u 2-—-— -vcOte
1+a2ae+ sin e =2 =2

The auxiliary equations required are

dT=Ted6+TQdq

‘i=aede+~~ 1
The characteristics of this system are given by

Sine d+=

-(z’w) ‘

(16)

(17)

(18)

(19)

Also, the streamlines are given by

de+asin(3d~=0 (20)

From equations (I-6) through (18), the condition to be fulfilled by da
and dT on the
characteristics

characteristics is also obtained. This is, for tie
deflne,dby equation (19),

——— —



10 NACA ~ 2651

)2 v cot

(21)

equations (19) and (21) coincide. Thus, referring to
fiaure 2; to continue a solution from a curve abc (not a characteristic
curve) t: a point d, one constructs the strai@t line segments ad and cd
by equation (19) and M by equation (20). Then equation (21.)enables
one to find a and T ‘(sndhence v and w by equation (15)) at
point d. ‘l%en U iS obtained by

du=uede+uqdq

or, along the ~treamline bd, usfig equations (15) ~d (~) y

du = (T-Sh 0~~2)@ (22)

Finally PO is needed. Stice ~ is a stre~e, Pd = ~. T’h~, ~

the characteristic ai,

d~=~-~a

.pede+j3qdq

= pe(de + a sin e dq)

=
~(Pf3d+ ~ea)(de+asinedq) (23)
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which gives pe at d amiithis completes the determination of

ditions at point d. Recall that, of course, Sp is constant

11

the con-

along kd.

In general, the construction of the solution in the hyperbolic
region by the methd of characteristics is complicat~ by the fact that
the boundary from which the solution is begun will be an initially
unknown shock surface. Construction of the shock solution may be carried
out in a manner similar to that given, for example, in reference 23, for
the case of plane or axkilly symmetric flow.

Referring to figure 3, suppose that the shock is to start at
point D. Its initial angle may be found by assuming that near D there
is a plane two--sional shock. This may be easily calculated from
the usual oblique-shock theory (see, e.g., reference 24), where one

.

must first calculate the components of the free-stream flow normal and
parallel to the ray passing from the vertex of the cone through the
point D. Then the component of the Mach number normal to this ray is
used as the initial Mach number in the oblique-shock relations with the
angle of fluw deflection also measured perpendicular to that ray. One
can then determine conditions immediately behind the shock. So long as
the shock remains plane, the Cartesian veloc~ty components, in the
region influenced only by the shock, will remin constant.

Thus, referring to figure h(a) suppose that the bounda~ surface to
which the shock is attached is tangent to OAH at its leading edge QA.
The shock will be tangent to the plane OAJ at OA. One then seeks to
determine the equation of the shock tangent to plane OAJ and the
Cartesian velocity compon~ts immediately behind the shock, in terms of
the free-streamMach number M, the position of the leading edge p,V,
and the slope of the body-tangent plane 6. ‘I%us,

MN1 =M{l - COS~ COS%

— _} (24)

n = LIKc . tin-l 1 sin~+tanvtane

-II
Cos p Cos V(tm v - sin p tan 6)

where %1 is the component of the free-streamMach number normal to

the leading edge and q is the angle of flow deflection through the
shock. Using ~ and q one may obtain from oblique-shock tables

(e.g., reference 24) the shock-angle ~ (angle JKC in fig. 4(a)) ~
the Mach number %2 behind the shock, normal to it. Then the velocity

component normal to the shock, behind it, is

—— .——- . — --———— —
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d
7-1 2

%?2 = (’-%2) 2-~2
1+~ 2 %22

where

s-n=

i

2Cos ~ COB v
-1M2

1+~
2

L

is the tangential component.

Then the

the shock are

Cartesism velocity components ~xY ‘Y~

0

(25)

and Vz behind

{FE:.::}+
%2 Cos l-)

- Cos$.1COS2V

r1 - Cos$l Cos%

1-COS v(sin v tan v + cos w sinv)

sinvtan~- sti ~ Cos p Cos% (26)
b

The equation of the plane portion of the shock is, in spherical
coordinates,

( - Cos% CO(32V
t~ ew 1

tan e =
Cos p Cos v )

(
*ewsinv cOs V+~cOsq -(tan f3vsinv-tanw)sinq. Cos p)

(27) .

-.
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Now consider again figure 3. Suppose that the shock is known up
to a point A and the conditions at a po~t B, lying on a characteristic
from A, are also lnmwq. One then seeks the conditions at point C on
the shock. The position of C may be found from the intersection of the
characteristic from B, found from equation (19), and the line se~ent AC,
having the slope ti 8A. Then, the conditions at C may be determined

from the differential expression (21) along BC and the conditions at the
shock. Let
left of the
Then, since
uous across

subscripts 1 and 2 refer to con&tions upstream (to the
shock in fig. 3) and downstream of the shock, respectively.
the components of velocity tangent to the shock are contin-
it, there hold

=U
‘2 1

( 1“(28))(
v2sin5-w2cos5= Vpns-wlcosb

)

and, for the jump in normal velocity across the shock (recall that u,
v, and w are the ratios of physical velocity.to maximum velocity),
there holds

(‘1 )(cos5+w+115,v2 cos5+w2sin5= )
,’

[

7-11
7+1 )]

-LLf.(p118. -wlcos82

But, because Ulj Vl, and wl are simply the-components of

stream which lies parallel to the 8 = O axis, one obtains,

‘1 =iicose

1’

where

ii=

‘1 =-ii Sine

W,=o I
i-

7- 1M2 ‘-

2
1+7 -lMz

2

(29)

the free

(30)

——...—.-—.—_ _. . . — .—.—- — .— .————. -—.—. ——
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Thenj the solution of equations (28) to (30) yields

‘2
=iicose

%2 2/=-v
‘2

( )-cot ~ Q + St112b=

Q- Cos%

-2
=U

(

Q2si112e—
Cos% .)%+sin

(31)

(32)

(33a)

where

( )
-1 # Stiae =0s251+7—

Q=. = 2
(33b)

7+1 .7-l M2~ti26
2

hence, one may consider that, from equations (32) and (33),

or expsnding in a Taylorts

TC = TB

\

— — —

Tc =T(~, ‘c>‘)

series along the cha~cteristic

+ (?S3@- ‘%)+ O(&Z)

(34)

~ (fu= 3),

(35)
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Then, using equations (21) and (35), there is obtained

,

( )[Irl*a E.1 - T2

=2
-de ‘

I ()
-u2-—-

1
- ~2 ~2 ~2 ‘

-
/m2

IL(
J.

T-l $
UA + C%ppe + — cot e

w =2 )

Hence one finds ~ from equation (36), then

vcot (3*

(36)

‘c
from equation (35),

and hence v and w. The quantity tlC follows from equation (32),

UC follows from equation (31), and the remaining quantities are

obtatied as in the general case already discussed. This procedure will
enable one to calculate the shape of the shock and the physical quan-
tities on it. However, the reader is cautioned to note that in most
cases the sheik will be in nearly the ssme’direction as the character-
istics immediately downstre~ of it. Hence the point B should be taken
close to point A.

In some cases, such as the low-pressure side of a lifting wing,
there will be no shock, but rather an expansion of the flow. In such
a case the solution is.simplified because the flow is irrotational and
the velocities vary continuously. The solution may be started by a
Prandtl-Meyer expansion in a manner analogous to that used where there
was a shock. As h the shock case, the normal compon&nt of the Mach
number ~1 @the angle of flow deflection q are found byequa-

tions (24). Then, referring to figure h(b), angle CKJl is the Mach

angle corresponding to ~l. Hence,

(37)

—.— cc — .—— -- ———.—.
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This defines the plane of the start of the expansion f= (OmJ1). Then,
.

using %1 as the initial Mach number and ~ as the deflection angle,

one can immediately obtain from tables of Prandtl-Meyer flows (see
reference 24) the nomnal Mach number %2 behind the flow. Then ~

and %2 are found by equations (25) and$he Cartesiah velocity com-

ponents, byequti~ (26). Then angle q + CKJ2 is the Mach angle

corresponding

The equations

to %2. Hence

of the planes of the start (OKAJ1) and end (OKAJ2) of the

fan of the expansion are then found by using equation (27), where,
instead of 13w,one uses amgle CKJ1,(equation 37) and angle CKJ2 (equa-

tion (38)) for the beginning and end, respectively. To find the veloc-
ities inside the fan, simply take a series of deflection angles between
O and q and calculate, as already described, the corresponding Vx,

Vy~ ~d Vz) W the angle, corresponding to angle CKJ2, of the plane

where those velocities apply.

Since the end.of,the expansion fan is not a characteristic of the
flow, the solution may bp conttiued$rom it in the manner already
described. .,

The remining kind.of.point which can arise is at the surface of
the bcxiyin the fluw (in fig. 3, point E): Here there is specified the
equation of the bcdy, %=~(~). Hence

(39)

., ;

and therefore, in equation (21), du is lnmwn and dT -y be solved
for immediately. This completes the solution of a purely ~erbolic
region.

If the flow in a given domain ib such that the system (equa-
tions (lJ_)and (12)) of differential equations defining the fluw is
elliptic, the solution must be found in some other manner. Also, if a
hyperbo~c region is boundedby an unknown elliptic region, that hyper-
bolic region will interact with the elliptic one so that both must be

.-——
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solved concurrently. In either case, the relaxation procedure (see, e.g.,
references 19 and 20) appears to be the best for this portion. In most
conical-flowproblems, the shock will be fairly weak, at least as com-
pared with a norml shock, because.it must remain attached to the body
in order to have conical flow. Furthermore, even if it is of appre-
ciable strength, that strength will probably vary fairly slowly about
the baiy. Hence, except at singular points (see reference 18), it
appears that the entropy gradients will be small and, to a first approxi-
mation, may be ignored. In such a case, one need solve only equa-
tion (12) with the right-hand side set equal to O. The effect of rota-
tion may then be found by an iteration process. For this, u, %p, %
SPj and Be in equation (n) are as found for the irrotational case

and A is then determined. These values determine then the right-hand
side of equation (12) and the left-hand side may then be relsxed again.
The process may be repeated if necessary.

To apply the relaxation procedure to the-system, one must first
write the differential equation in finite difference form. ReferrinR to
figure 5, at point E the= holds approximately,

()‘b . % ‘“F
Sinej 2@sin~

()‘w— =
sh2e‘E

(M)2

‘A-UG+UJ-UC

4Ae&sin(3E

%-%+%?

(N s~ %)2

“

However, in solving the (irrotational)problem, it
computing purposes to relax u by using ‘ee ad
ference form and to correct periodically the other
for point E

(40)

appears easiest for
~ in finite dif- “

terms. Thus one gets,

—-.- .-—— .- -— —— ——.__.__—_ ___ .— —-. —--— —.
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,

where

Also it is seen that, since the difference equation (41) has variable
coefficients, there is no particular advantage in making N and Q
everywhere the same. b particular, the range of variation of q will
usually be much greater than that of ,, so that it appears reasonable
to take @ greater than A9.

At a
The boundary conditions in this region may appear in several forms.
solid boundary, the condition is

.

deB
v=-l?—

dq
(42) ‘

where ~ = ~(~) is the equation of the boundary. Ona line where the

region abuts a lmcmn hyperbolic region, u will be specified. On a
line of symmetry, the normal derivative of u will be O.

The final kind of boundary condition will.appear at a shock. The
essential difficulty here is that the location of the shock is initially
unhlown. However, the following methai may be used to specify this con-
dition. First, the position of the shock is estimated to as great accu.
racy as possible. This maybe done in a number of ways. If the bdy is
nearly the shape of another for which the shock is lnmun (as a circular
cone), the shock will be close to that known shock. If part of the
shock is already lmown from calculations in an independent hyperbolic
region, the r-inder may probably be estimated fairly accurately.
Finally, the methml given by Lighthill in reference 21 may be used to
approximate the position. In any case, the more accurately the shock
position is known at the start, the easier will be the solution.

Suppose now that the shock has been esthated in some manner. de
then uses as the shock boundary condition the (known) values of the

.

radial velocity u corresponding to that shock. Then the flow is
calculated roughly and the variation of u,, or appro-tely, v, is



“

.
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obtained. At the shock this velocity must satisfy the known jump condi-
tion in the normal velocity. From equations (31) to (33), this is

‘2 =
-: sin 19(Q+ Si112b) (43)

Then, assuming

be found (fig.

the calculated

5 remains

6). If one

constant, the variation of V2 with G may

then plots also the variation of v from

velocity field, extrapolating if necessary, a new shock
position may be found. This relaxation of the shock position can
readily be carried out concurrently with the relaxation of the field.

Once this irrotational solutim is found, the entropy distribution
at the shock is given by

o

[ 12yM2 sin20 cos25 - (7 - 1) -
7(7 - 1)s = lo&

7+1

[

(7 + 1)M2 Sti2e COS%
7 %e

2+(7- 11)M2 Sti28 COS2b

(44)

This completes the description of the method
general conical-flow problem. It should be noted
relaxation procedure is applicable without having
the solution, it will be difficult to solve unless a reasonable esti-
mate of the field can be made at the start.

,

of solution of the
that, although the
any initial idea of

Consider a flat-plate, zero-thickness, triangular wing (fig. 7) at
a -12° angle of attack, having as the included angle of the leading
edges, 90°, and moving in an otherwise uniform stream at a Mach number

of 3. (Since the leading edges are supersonic the Mach angle is

sin‘11/3 * 200), the top and bottom surfaces are independent. The

lower surface is an expansion surface and has no shock and hence the
flow on this side is irrotational. The solution on this side will be
discussed first (fig. 8).

—-. ~—— . . . . . . . .
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equation (24), %1 = 2.1667 and q = 16.731°. Then, from

~tl-~y’r -~”ion”, %2 = 2“@2” Thus

.

‘x = 0.8388

I~y = -0.0732

‘z = 0.1783

the Carteaian velocity components in
equation of the start of the expansion BF is

-cot 19= 2.6614 COS(~ - 11.740) + 0.9577

(45)

region CDF. Also, the

Sin(cp - 11.740) (46)

and the end of the expasion

-cOt e = 22.5608 COS(qI

fan CF is given by
.

- 11.740) -!- 0.9577 sin(~ - 11.740) (47) “
.

The values for the Cartesian velocity components, given by equa-
tions (45), are constant in CDF. This is not the entire hyperbolic
region. However, by using the defining equation of the characteristics
(equation (19)) and values of the velocity components calculated in the
expansion fan, there was calculated that characteristic starting at B,
which is the point of tangency of the Mach cone from the wing vetiex
and the start of the expa&ion.
bolic region to the left of BCD,
one. Hence the remaining domain
The bounda~ conditions are: ‘

This iq Bm. Although there is a hyper-
it is dependent on the unknown elliptic
AK!DEA must be solved by relaxation.

ABCD : u specified
1

DE:
‘e = -%=-’ }

(48)

EA: ~.o J .
To get an

of the problem
initial estimate of the solution, the linearized solution
was found. The perturbation component of the radial .

— ——
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velocity 5U is given (in the elliptic region, that is, inside the
Mach cone from the wing vertex) by

iia cos 96U=- ~ x

.

{

+l+t=estiq -1

[

(1+ M2- l)t.me Sinq

K ‘1‘hKlil+t~e”fi,)2+t~2eco”
[ H 1 )2- l)tan% - ~-12WOCOS
+t.tulecosq) tan

r-1+ tm2e 1+(M2 - l)COS%1

Then, the linearized solution is

U=iicose+bll (49)

The initial guesses for the values-of ‘u were the values obtained
from equation (49), mdified in an arbitrary manner to fit the lamwn
boundary values and the actual shape of the elliptic (and depeqdent
hyperbolic) region.

The solution was then completed by a relaxaticm process. Figure 8
shows the configurationtogether with the various regions encountered.
In figure 9, the surface pressure coefficient, given by

Cp=f= ~{~-(u::$+wafv,} (,,,

is shown. For comparison purposes, the linearized pressure coefficient
is also given. Ikcause the ratio of angle of attack to Mach angle is
high (0.62), the linearized theory can hardly be expected to yield
accurate results. This completes the solution on the expansion side of
the wing.

—.. _________ .-.—.___ ._ _ -— ...—. —- —.— ———
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On the compression side, the solution in region IGH (fig. 8) was
found first. As before, %1 . 2.1667 and ~ = 16.73100 Then, frm

the shock tables %2 = 1.524. Thus

‘x = 0.7076
1

‘Y
= 0.0607 (5Q

‘z = 0.1504 J
The equation of the first part of the shock (113)is then

-cot e = -1.4318 COS(~ - IL740) +0.9577 Sin(ql - 11.740) (52)

As in the expansion case, this analytic solution does not cover the
entire hyperbolic region, but only that part limited by the character.
istic GH, starttig from the point immediately downstream of the shock

where V2 + W2 = C2. As before, there is a small hyperbolic region
which is dependent on the elli~tic one. The remaining domain GHDEKG
must be solved by relaxation. First, hawever~ the shock position is
needed. The Mach angle is 19.5° and the shock angle corresponding to a
plane wedge at a 12° angle of attack and a Mach number of 3 is 29.5°.
Hence the shock angle at the mitie was chosen arbitrarily as 2T.50 and
a smooth curve fitted in. Then, for the domain, these boundary condi-
tions hold

KGH: u specified
7

HDE:
F’%’-& (G)

1.

(53)

EK: ~=o -

An initial estimate of the solution was made in the same manner as
in the previous case. Then, after the relaxation had been carried out
so that the residuals were fairly small, the shock position was recalcu-
lated in the ~er already described. This procedure was continued and .
the solution obtained. No particular difficulties were encountered and,
in this case at least, the shock position did not have to be changed a
second time.

.
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The entropy
slowly and hence
variation.

distribution along the
no attempt was tie to

23

shock was found to vary fairly
correct the solution for this

The pressure distribution on this surface is shown in fimrre 9 and
compared with

In table
regions where
given and, in

the result predicted by linearized theory. - -

I, the velocity field for the wing is presented. In the
the flow is plane, the Cartesian velocity components are
the remaining regions, the radial.component is given.

DISCUSSION

The methml described in this report for the solution of conical
flows appears to be applicable io any such flow. With one possible
exception, the reWxation procedure should converge fairly readily. That
exception might arise in the case where a large hyperbolic region where
the flow properties varied rapidly is embedded in an elliptic region.
An example of such a case is the tip region of a lifting wing with sub-
sonic leading edges. In such a case there will be a very large upwash
velocity at the tip (the linearized theory predicts infinite upwash).

It dSO should be remembered that, as was found in the example
discussed previously, the solution obtained for an independent hyper-
bolic region will not be valid up to the parabolic line, but, rather, a
portion of the hyperbolic dcmain will depend on the elliptic one.

Rega@g the calculated example, several things are noteworthy.
First the pressure on the shock and expansion sides are both consider-
ably higher than the linearized theory indicates. Thus the lift of the
wing is larger than that predicted by the linear theory. However, one
would ekpect that there will actually be separation on the expansion
side of the airfoil and that therefore some of this added lift will not
be realized. A second-observationis that the extent of the constant-
pressure region has been drastically changed.

CONCLUSIONS

A numerical method has been described for the calculation of the
. supersonic flow about cones for the case where the shock, if any, is

attached to the cone so that the flow is conical. ‘I’heprocedure employs
a combination of the meth~ of characteristics and the relaxation method.
Also, an iterative process for obtaining the position of the shock is
described. The method can be applied to any conical flow. The main

.
. ————__. . . . . .. — —— — —————————.— —.— — —.— —-——— - .—
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problem in
solution.
there is a

NACA TN 2651

practical applicatia is the convergence of the relaxation
●

No difficulty on this score should be anticipated umless
large embedded hyperbolic region where the flow velocities

are expected to vary rapidly.

Brown University
Providence, R. I., August 23, 1951 . ~
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TABLE I

VELOCITY FIELD IN DISTURBED REGIONL

(a) k region l12Hwhere Vx = 0.7076, Vy = 0.0607,

‘z
= 0.1504.

-50o I -40 -60-30

0.7396
.7344
.7265
● n%

------
------

-70

0.7438 0.7433 0.7418
● 7393 ● 7388 ● 73n
.7318 .7313 .7296
.7211 .7208 . TL89

15
18.5
22
25.5

;;. 5

------

0.7303
.7219
.7109
.6975

------

------

0.7250
● TL59
.7043
.6905
.6752

----.-
----.-
------

0. 69*
. 6a13
.6654

------
------
------
----.-
------

0. 65k5------ ------ ------

(b) In region CDF where Vx = 0.8388, VY = -0.0732,

and Vz = 0.1783.

0 -60-30 -90 -120 -lx -180

0.8278 0.8278 0.8278 0.8278
.8242 .8189 .8155 .8144
.81~ .8029 .7985 ● 7973
.7912 .7809 .7778 ● 7774

------ .7536 .7554 .7554

0.8278
.8365
. 8h05

-.----
------

0.8278
.83h.6
.8352

------
------

0.8278
.8@9
.8252
.8141

------

On characteristicBC.2(c)

T ‘x ‘Y ‘z

-90 0: ::;7’ -0.0682 0.1607
-105 -.0490 .1000
-120 .8178 -.02>> .0470
-135 .8059 -.0055 .0100
-148 .8018 0 0

.
‘All velocities are radial unless otherwise specified.

%alues given are constant on =ys extending through
tip.wing

—.— .-. —..-z. -—— .._ —.. .. —_____ .._ ———. —
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Figure 1.-

NACA ~ 2651

Coordinate systems and veloci~ components used in
analysis of supersonic conical flow.

./

Characteristics

b

Stiesniline

c

v

Figure 2.- Construction of solution
bolic regionby method

for conditions at point in
of characteristics.

Figure 3.-

/ ‘)

/

&

A-.

ShocF-

—Characteristic

Construction of solution for plane two-dimensional
hyperbolic region by method of characteristics.

general

.

hyper- “

shock in

.
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z

1/
M,ii

bY

Shock

\
\
\

\

\
\ T

(a) For shock attached to bounda~ surface tangent to body surface.
Plane JACH is orthogonal to OC; plane JKCH is orthogonal to OK.

Y

(b) For expansion of flow (no shock). Plane HAJlJ2C is orthogonal to
OC; plane HKJ1J2C is orthogonal to OK.

Figure 4.- Construction of solutions by method of characteristics for
shock attached to body-tangent boundary surface and for expansion
of flow in hyperbolic region.
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.

Figure ~.- Construction of solution for elliptic region by
process.

relaxation
.

.

I /

“u
q I

Calculated

Old shock position

I
1- New shock position

Figure 6.- Variation of v with f3 when b is ass- constant.
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M=3

/’

wing

Free-stream
Machcone

31

Figure 7.- Flat-plate, zero-thickness, triagdar wing with supersonic
leading edges in @orm stream at Mach number of 3.

a

Figure 8.- Construction of solution for flow about triangular wing with
supersonic leading edges.
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Nonlinear, expansion side

y

\ !
Linear, expansion side.
I I I I

e Tip ,
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Figure 9.- Surface pressure coefficient.
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